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In this note we discuss three types of polynomial spline approximation: (i)
Schoenberg's variation-diminishing approximation, (ii) simple variation-di
minishing approximation, and (iii) a natural extrapolated approximation which
can be obtained by taking the appropriate linear combination of the first two.
The latter method, although not variation diminishing itself, has a number of
practical advantages over either (i) or (ii), including higher-order convergence
properties with respect to mesh gauge and in order of derivative, specifically,
for C2 functions defined on finite intervals, it exhibits uniform convergence
behavior in value, slope, and curvature, whereas the other methods break down
on the last and sometimes critical "shape-getting property," namely, convergence
in curvature.

1. SCHOENBERG'S VARIATION-DIMINISHING SPLINE ApPROXIMATION

Let knots Xo ::::;;; Xl ::::;;; ... ::::;;; X n+m+1 be given and let N,,m+1(x), j = 0,
1,... , n, be the associated B-spline basis of degree m (cf. [7,8]). For a func
tion f(x) defined on the interval [xo , x n+m+1] Schoenberg's variation-dimi
nishing spline approximation to f(x) is given by

where

n

S,jf(x) = L f(g,) N j ,m+1(x),
,~o

(1)

m

tj = I XHi/m,
i~l

j = 0,1, ... , n. (2)

In this formulation we allow for the possible coincidence of the knots up to
the mth order (of coincidence).

This method of approximation was introduced by Schoenberg as the
"natural" extension to splines of the classical Bernstein polynomial approxi
mation to a function f(x) defined on a finite interval [a, b].
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Specifically, the preservation of linear functions and the variation-dimi
nishing character of the Bernstein polynomial approximation have been
made the basis for this extension to splines. Similar extensions have been
made to splines defined with respect to more general Tchebycheff systems of
functions by Marsden [5], and Karlin and Karon [2]. In this paper we consider
only the ordinary or piecewise polynomial spline case.

Let v(f) denote the number of sign changes of j(x) on the interval [to, tn].
Then formula (1) defines an approximation with the properties

v(S,d) ~ v(f)
and

for every
S;Jj(x) = c + dx

j(x) = c + dx

(3)

(4)

(5)

In general the interval [xm, x n] is strictly contained in the interval [to, tn]
unless a = Xo = ... = X m and b = xn+1 = ... = Xn+m+l' in which case
both intervals coincide with [a, b]. This latter assumption is usually made
in connection with Schoenberg's method of approximation on a finite
interval because (3) may then be strengthened to

v(S,:J! - c - dx) ~ v(f - c - dx)

on [a, b]. Hence, the total variation T(f) offon [a, b] satisfies

T(S;Jf) ~ T(f).

(6)

(7)

As a particular case, if n = m, then Schoenberg's method reduces to the
classical Bernstein polynomial approximation of degree m on the interval
[a, b]. Essentially, because of (6) and (7), the spline variation-diminishing
method shares many of the related properties of its special case, the Bernstein
method. Notably these include the so-called shape-preserving properties
such as positivity, monotonicity, and convexity [4,8]. In addition, the spline
method has convergence properties on both the knot spacing and the degree
of the spline [4,5, 7].

2. SIMPLE VARIATION-DIMINISHING SPLINE ApPROXIMATION

We consider a second type of variation-diminishing approximation which
is, in some ways, more natural than Schoenberg's method. In the notation
of the previous section we define

(8)
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From well-known properties of the B-spline basis it follows immediately
that (8) preserves linear functions f(x) = a + bx (cf. [8]). The number of
sign changes in the ordered set of coefficients

m

aj = L f(xi+j)/m,
i~l

.i = 0, I, ... , n,

is not greater than in the set f(x k ), k = 1,2'00" n + m, hence, in f(x) itself.
Consequently, as in [8],

v(SLJf(x)) ~ v(a;) ~ v(f), i=O,I,oo.,n. (9)

The preservation of linear functions allows one to strengthen (9) to

v(SLJf(x) - C - dx) ~ v(f - c - dx)

for all c, d. Therefore,

(10)

(11)

on the interval [a, b]; i.e., sLJf(x) is an alternative variation-diminishing
spline approximation to f(x) which we call simple variation-diminishing
spline approximation.

What we mean by the phrase "more natural" above is simply that the
evaluations of the function take place at the knots rather than on the m-fold
average of the knots as in Schoenberg's method. The striking resemblance
of the two variation-diminishing formulas is made clear by rewriting (1) as

(12)

Of course, either approximation method preserves positivity, monotonicity,
and convexity. However, the property of convexity has to be qualified some
what in the case of formula (8): strict convexity is not always preserved. For
example, in the special case of no interior knot, SLJ! reduces to the straight
line connecting the end points of f(x). However, if there is at least one
interior knot strict convexity is also preserved. In addition to not containing
Bernstein polynomial approximation as a special case, this method does not
converge to the function with respect to the degree m for a fixed set of interior
knots. Rather, it always converges to the straight line joining the end points
of the function.

THEOREM I. Let a < YI ~ Yz ~ ... ~ Yk < b. Define knots by setting
X o = Xl = ... = X m = a, Xm+i = Y;, i = 1,2'00" k, and Xm+k+l = xm+k+Z =
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... = X2m+k+1 = b. Then SLJ! ->- f(a) + [feb) - f(a)]«x - a)/(b - a)) as
m ->- 00.

Proof Formula (8) specializes to

m-l k m-l

sLJf(x) = f(a) L Ni(x) + L f(Yl)/m L Ni+I(X)
i~O l~1 i~O

m-l m-l

+ f(b)/m L (i + 1) Nk +i+1(X) - f(a)/m L iN;(x).
i~O i~1

The result follows from the limit identities

m-l

lim L N;(x) ~ 1m __ oo
i~O

and
m-l m+k

lim (11m) L (i + 1) Nk +i+1(X) ~ lim (11m) L iN;(x) ~ (x - a)/(b - a).
m~ro i=O m-H/J i=O

When compared on the basis of knot spacing, the methods are somewhat
less distinguishable.

THEOREM 2. Let!E C2[a, b], II r II = maxa<:"'<:b Ir(x) I and II .1 I! be the
mesh gage. Then

I sLJf(x) - SLJf(x)! :(; (m 2 - 1)/2411 r II • II .1112
• (13)

Proof From Taylor's theorem,

where g~ is between Xw and gj . Therefore,

m m

L f(xi+j)lm = f(gj) + L (Xi+j - gj)2/2mr(gz),
i~1 i=1

from which it follows that

or
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In terms of the mesh gage II Llil we have

m

I (Xi+f - gi)2/2m :s;; (m2 - 1)/2411 LlI12

i=l

for allj. Hence,

I s,Jf(x) - S<lf(x)I :s;; (m 2
- 1)/24 III" !I '11 Ll112

•

For Schoenberg's method we know that

IS<lf(x) - f(x)1 :s;; (m + 1)/2411f"(x)II'11 Ll112
•
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Q.E.D.

(14)

Using the triangle inequality on (13) and (14), we see that the error in simple
variation-diminishing approximation is bounded by

I s,jf(x) - f(x) I :s;; (m 2 + m)/24 II I" II . II Ll112
• (15)

Although both methods have the same quadratic order of convergence on
the mesh spacing (for C2 functions), one might expect the Schoenberg
method to be generally better (by a factor of lim) and this is born out in a
numerical comparison of the two methods (maximum error) on the function
lex) = ex, summarized in Table 1. The number of equally spaced knots n
and the degree of the spline m is given by the pair (n, m).

The theory of this second kind of variation-diminishing approximation
method parallels that of Schoenberg's method. For example, a minor
modification of Marsden's proof [4] leads to

THEOREM 3. Let the {Xi} be defined as above and {Ni(x)} the B-spline basis
ofdegree m - 2 on the reduced set ofknots {Yi}, where Yi = Xi+2' i = 0, 1, ... ,
n + m - 3. Then

/ 2 n-l (+ . )
_U_ f = "f"( .) Xj+m Xi - Xi-1+m - Xi-l N.( )
d 2 S,j. L. 'Y), 2(7'. _ C ) , X ,
x,~ ~ SH

where

and

The analog of the convergence results for first and second derivatives is

THEOREM 4. If f E Cl[O, 1] and m is fixed, then (d/dx) s<lf --* df/dx
uniformly on [0, 1] as II LlII--* 0. If fE C2 [0, 1] and Xi = i/n, then (d2/dx2)
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sJ-- d2JIdx2 pointwise in the open interval (0, I) and uniformly on compact
subsets of (0, 1) as n -- 00. At the ends of the interval,

d 2 d 2

lim -d2 s,jf(O) = (m - 1)/2 -d2f(0)
n---+CO X X

and

. d 2 d2

lIm -d2 S,jf(1) = (m - 1)/2 -d2 f(l).
n---+oo X X

As in Schoenberg's method, we have convergence to second derivatives at the
end points only for m = 3, i.e., the cubic spline case.

The behavior for higher derivatives is very similar. Finally, the analog of
the Voronowskaja result for equal knot spacing (cf. [4]) is

THEOREM 5. /ffE C2[0, 1] and x fixed, 0 < x < I, then

sNf(x) - f(x) = m;~t f"(x) + 0 ( m2

,; m). (16)

Here, N = n + 1 represents the number of knots counting the end points.
of the interval.

Remarks. If one seeks other linear combinations of B-spline basis
functions which lead to "variation-diminishing" approximation methods, it
is possible to find many alternative schemes of the form

i.e., if one fixes the knots in advance. Unfortunately, the {~i} and {Wii}, in
general, depend nonlinearly not only on the number and locations of the
knots, but also on the degree of the spline. Exceptions to this are the iterates
of these variation-diminishing methods, e.g., S = SiS,j!), S = SiStI
(S,jf)), etc. However, the two schemes above seem to be the most natural
ones that can be devised of this genre.

3. EXTRAPOLATED APPROXIMATION

To motivate this section, we first consider Schoenberg's variation-dimi
nishing approximation method of degree m with N - 2 equally spaced
interior knots. Then SNf(x) = f(x) + E(x), where

E(x) = (m + 1)/24n2 f"(x) + o«m + 1)/n2
). (17)
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The form of the error in (17) first suggested to us the application of the
familiar Richardson extrapolation technique as it is ordinarily used
throughout numerical analysis to speed up the convergence of a numerical
process. Namely, computing two variation-diminishing approximations for
different numbers, N1 and N 2 , of equally spaced knots, we take that linear
combination which has the term involving rex) eliminated from the error
of approximation to j(x). Specifically, with n1 = N1 - 1 and n2 = N2 - 1,
this formula is given by

SNl,N.!(X) == (n22SN.!(X) - n12SNJ(x))/(n22 - 1112). (18)

Because of (16) one can do the same thing with the simple diminishing
method; in fact, the same linear combination eliminates the rex) term:

SNl,NJ(X) == (1122SNJ(X) - n12sNJ(x))/(n22 - 1112). (19)

Although of some practical interest we abandon these methods in favor of a
better one. Guided by the above idea we can also eliminate the rex) term by
simply combining the two variation-diminishing schemes. From (16) and
(17) we obtain the formula

(20)

We regard (20) as the natural extrapolated method for a variety of reasons.
First, the knots of the resulting mth-degree spline are the same as in each of
the terms, whereas (18) and (19) involve splines with different knots. More
importantly, (20) reproduces quadratics and, relatedly, has higher-order
convergence properties in function value and the first two derivatives.
Finally, the same linear combination is valid for arbitrary knot spacing. We
now consider this latter method, i.e.,

TcJ(x) == (mS.d(x) - SLJj(x))/(m - 1). (21)

As one might expect, the natural tools to use in the general case are the
relations obtained from the Marsden identity connecting the B-spline basis
with ordinary polynomials [4], namely:

n

1 == I Nj ,m+1(x),
i~O

n

X == I gjNj,m+1(x),
i~O

(22)

x2 == f gJ2)Nj ,m+1(x),
i~O
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m

gj = L xJ+i/m,
i=l

(23)

.etc. As noted above, either Schoenberg's method or the simple spline varia
tion-diminishing method are both immediately derivable by considering the
first two relations. It is a trivial matter to see that the formula in (21) satisfies
the first three relations using the algebraic identity

valid for all m ~ 2. Hence, when f(x) = a + bx + cx2, T,jf(x) - f(x).

THEOREM 6. If fE Ci[O, 1] and m ~ 2, then (di/dxi) T,jf ->- d1ldxi

uniformly on [0, 1] as II Llil ->-°for i = 0, 1, 2.

Proof For i = 0, lone can relate this directly to the established con
vergence behavior of the functions SJ and s,jf For i = 2 a more detailed
proof as found in [4] may be constructed. Specifically, one can show

n

(d2/dx2) T,jf(x) = I A/vj(x),
j~2

where B j = (m - l)(~j - ~j-l) A j is given by

(25)

Bj = m[(f(gj) - f(gj-l»/(gj - gj-l) - (f(gj-l) - f(gj-2»/(gj-l - gj-2)]
- [(f(Xi+m) - f(xj»/(Xi+m - Xj) - (f(Xi+m-l) -f(Xj-l»/(Xi+m-l - Xj-l)]'

For C2 functions A j is simply an elaborate finite difference approximation
to f"(~j), i.e., A j = f"(~j) + OJ with OJ bounded in terms of the modulus of
continuity of f"(x), e.g., I OJ I ~ w(f", (m + 1)11 LlII). With this interpretation
it is a short step from (25) to the proof of uniform convergence in the second
derivative as II LlII->- 0. For smoother functions, for example, those where
the second derivative is Lipshitz continuous, the above results can be shar
pened to: Tjf(x) ->- fi(X) with a rate of convergence given by II LlII3-i,
i=0,1,2.

Remarks. For equally spaced knots the uniformity of convergence to
second and higher derivatives breaks down at the end points of the interval
for either variation-diminishing method. In the extrapolated approximation
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these phenomena begin with the third and higher derivatives. This is of
interest because many applications require the approximation method to
have the ability to represent data faithfully up through curvature. For
example, in computer-aided design-related applications the merits of a
fitted curve are often judged visually and curvature behavior is not only
observable, but may be a crucial criterion. This is especially true if such a
curve is to represent a highly stylized physical shape. On the other hand,
there are strictly physical applications where first and second derivatives of
an approximation, e.g., to experimental data representing a physical variable,
are considered important and useful quantities (such as estimates of velocity
and acceleration from displacement data). In these cases the behavior of
higher-order derivatives (;;?:3) are much less relevant. Although the variation
diminishing spline approximation methods have a number of desirable
overall shape-preserving and -smoothing properties, they are theoretically
unable to approximate accurately the curvature of the data or function
(except for rn = 3). The above modification is intended and recommended as
a practical compromise between the legitimate variation-diminishing methods
and the many kinds of higher-order spline methods developed over the past
several years which, typically, exhibit uniform convergence in all derivatives
up to and including the degree of the spline. We call the reader's attention to
the fact that this method consists of m/(m - 1) parts Schoenberg's method
minus l/(rn - 1) part of a comparable spline variation-diminishing approxi
mation. In practice, at least for large enough rn, we expect many of the
qualitative difference between it and Schoenberg's method to disappear.

4. NUMERICAL EXAMPLE

Table I illustrates the behavior of the maximum error for the three approxi
mation methods applied to the function f(x) = eX on [0, 1]. The pair (n, rn)
represents the number of equally spaced knots and the degree of the spline,
respectively. For smooth functions these results are typical and predictable
from the theory. Comparison plots of these methods (cf. [6]) indicate that the
extrapolated method is much more effective than either variation-diminishing
method in accurately representing the function together with its first two
derivatives on the whole interval.

5. MODIFIED BERNSTEIN POLYNOMIAL ApPROXIMATION

We conclude this paper with a special case of the extrapolated spline
approximation method that we have introduced, namely, the case of no
interior knot. Set 0 = X o = Xl = ... = Xm- l and 1 = X m = Xm+1 = '" =
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TABLE I

(n,m) Es E. ET

(2,2) 0.108 0.212 0.014
(2,3) 0.072 0.212 0.0096
(2,4) 0.054 0.212 0.0072
(2,5) 0.044 0.212 0.0058

(2, 10) 0.022 0.212 0.0029
(2, 15) 0.015 0.212 0.0019

(3,2) 0.052 0.108 0.0031
(3,3) 0.047 0.142 0.0024
(3,4) 0.040 0.59 0.0028
(3,5) 0.034 0.70 0.0028

(3,10) 0.020 0.191 0.0021
(3, 15) 0.014 0.198 0.0016

(4,2) 0.027 0.055 0.00091
(4,3) 0.030 0.092 0.00079
(4,4) 0.030 0.119 0.00125
(4,5) 0.D28 0.137 0.00157

(4,10) 0.018 0.174 0.00163
(4, 15) 0.013 0.187 0.00135

(5,2) 0.017 0.033 0.00038
(5,3) 0.019 0.058 0.00036
(5,4) 0.021 0.085 0.00054
(5,5) 0.021 0.108 0.00081

(5, 10) 0.016 0.159 0.00126
(5, 15) 0.012 0.177 0.00115

(10,2) 0.0037 0.0075 0.000035
(10,3) 0.0046 0.0139 OO32סס.0

(10,4) 0.0054 0.0218 OO55סס.0

(10,5) 0.0062 0.0310 OO78סס.0

(10, 10) 0.0088 0.0884 0.000257
(10, 15) 0.0086 0.1284 0.000489

(15,2) 0.0016 0.0032 OO11סס.0

(15,3) 0.0020 0.0061 0.000007
(15,4) 0.0024 0.0098 0.000011
(15, 5) 0.0028 0.0141 OO18סס.0

(15,10) 0.0044 0.0441 0.000065
(15, 15) 0.0055 0.0827 0.000150
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X 2m- 2 • Then Schoenberg's method reduces to the ordinary Bernstein poly
nomial approximation of degree m, Bmf(x) = L:'o C') f(v/m) x V(1 - x)m-v.
Simple variation-diminishing spline approximation specializes to the straight
line joining the end points of the function; L(x) = f(O)(1 - x) + f(1) x.
Therefore, the extrapolated approximation is of the form Tmf(x) = (mBm
f(x) - L(x))/(m - 1), also a polynomial of degree m. Although others
(e.g., [1]) have considered linear combinations of Bernstein polynomials
which have higher-order convergence properties, this slight modification of
the ordinary Bernstein approximation may be new. Although not variation
diminishing, it is partially shape preserving in the sense that it preserves
convexity and strict convexity. From Voronowskaja's theorem,

lim (m - I )(Tmf(x) - f(x)) = (x(1 - x)/2) rex) + f(x) - L(x), (26)
m-->~

which can be rewritten in mean value form as

lim (m - l)(Tmf(x) - f(x)) = (x(1 - x)j2)(f"(x) - r(g",)), (27)
m-->oo

where 0 < g", < 1. The rate of convergence to f(x) is the same as that of
Bmf(x)(o(I/m)). However, since it reproduces quadratics, one can often
expect Tmf(x) to be a better approximation, particularly for smooth func
tions. For f(x) = e'" on [0, 1] we see from Table I (entries (2, m) that the
computed maximum error is consistently 0.13 of the maximum error in the
classical case.
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